INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE DER TECHN. HOCHSCHULE ## Introduction to Two. S. 20/ 548 THEORETICAL METEOROLOGY SEYMOUR L. HESS Florida State University INSTITUT F. MET. U. KLIMAT. TECHN. HOCHSCHULE HANNOVER B 6 A Holt-Dryden Book HENRY HOLT AND COMPANY, NEW YORK CONSTABLE & CO LTD 10-12 ORANGE STREET, LONDON, W.C.2 ## CONTENTS | | PREFACE | Page
vii | |----|---|-------------| | 1. | Introduction | 1 | | | 1. The Physical Foundation, 1 | | | | 2. The Goal, 5 | | | | 3. Units and Dimensions, 5 | | | | 4. The Earth, 7 | | | | 5. The Atmosphere, 9 | | | | PROBLEMS, 10 | | | 2. | The Equation of State | 12 | | | 1. The Variables of State, 12 | | | | 2. Charles' Law, 13 | | | | 3. Boyle's Law, 15 | | | | 4. The Equation of State of an Ideal Gas, 15 | | | | 5. Mixtures of Gases, 18 | | | | PROBLEMS, 19 | | | 3. | The Principles of Thermodynamics | 20 | | | 1. Work, 20 | | | | 2. Heat, 22 | | | | 3. The Law of Conservation of Energy, 24 | | | | 4. Internal Energy and Specific Heat Capacities of an Ideal | | | | Gas, 27 | | | | 5. Adiabatic Processes, 30 | | | | 6. Entropy and the Second Law of Thermodynamics, 32 | | | | 7. Summary of Thermodynamic Variables, 36 | | | | PROBLEMS, 37 | | | | iar | | | 4. | The Thermodynamics of Water Vapor and Moist Air | 39 | |----|---|----| | | Isotherms on an a, e Diagram, 39 Thermal Properties of Water Substance, 41 The Equation of State of Moist Air, 43 Changes of Phase and Latent Heats, 44 The Clausius-Clapeyron Equation, 46 Adiabatic Processes of Saturated Air, 51 Moisture Variables, 58 PROBLEMS, 64 | | | 5. | Thermodynamic Diagrams | 65 | | | General Considerations, 65 The Emagram, 67 The Tephigram, 69 The Skew T-Log p Diagram, 70 The Stüve Diagram, 72 Choice of a Diagram, 74 PROBLEMS, 74 | | | 6. | Hydrostatic Equilibrium | 75 | | | The Hydrostatic Equation, 75 Height Computations for Upper-air Soundings, 77 The Hydrostatics of Special Atmospheres, 80 Altimetry, 86 Reduction of Pressure to Sea Level, 88 PROBLEMS, 90 | | | 7. | Hydrostatic Stability and Convection | 92 | | | General Considerations, 92 The Dry and Moist Adiabatic Lapse Rates, 92 The Parcel Method, 95 Changes of Stability During Displacement of Layers, 100 The Slice Method, 103 Entrainment into Cumulus Clouds, 106 The Bubble Theory, 110 PROBLEMS, 113 | | | 8. | The Fundamental Physics of Radiation | 114 | |-----|---|-----| | | Nature of Radiation, 114 Atomic and Molecular Spectra, 115 Scattering, 119 Black-Body Radiation, 121 Radiative Transfer, 125 PROBLEMS, 127 | | | 9. | Solar and Terrestrial Radiation | 128 | | | The Nature of Solar Radiation, 128 Geographical and Seasonal Distribution of Solar Radiation, 131 Terrestrial Radiation, 134 PROBLEMS, 138 | | | 10 | Applications to Radiation in the | | | 10. | Earth-Atmosphere System | 139 | | | The Basis of Elsasser's Method, 139 The Elsasser Diagram, 142 Radiative Heating and Cooling of Clouds, 147 Infrared Radiative Cooling of the Atmosphere, 148 Transformation of Maritime Polar Air into Continental Polar Air, 149 Radiative Equilibrium and the Stratosphere, 152 The Mean Annual Heat Balance, 155 PROBLEM, 160 | | | 11. | The Equations of Motion on a
Rotating Earth | 161 | | | Inertial versus Noninertial Coordinate Systems, 161 The Dynamical Equations in a Rotating Coordinate System, 162 Gravitation versus Gravity, 166 The Pressure-Gradient Force, 169 Inertia Motion, 170 Individual versus Local and Convective Derivatives, 172 PROBLEMS, 174 | | | | | | | 12. Horizontal Motion under Balanced Ford | ces 175 | |--|---------| | Equilibrium Motion, 175 Geostrophic Flow, 175 The Effect of Friction, 179 | | | Gradient Flow, 180 Comparison of Geostrophic and Gradient Wind Value Cyclostrophic Flow, 187 Representation of the Pressure Gradient on Other
Horizontal Surfaces, 187 | | | 8. The Thermal Wind Equations, 189 PROBLEMS, 196 | | | 13. Kinematics of Fluid Flow | 198 | | Kinematics versus Dynamics, 198 Resolution of a Linear Velocity Field, 198 Streamlines, Trajectories, and Streak Lines, 201 The Stream Function, 205 Circulation and its Relationship to Vorticity, 208 The Equation of Continuity, 212 The Complete Set of Equations Governing the sphere, 215 PROBLEMS, 217 | Atmo- | | 14. The Mechanism and Influence of Pressure Changes | 219 | | The Tendency Equation, 219 The Bjerknes-Holmboe Theory, 221 The Isallobaric Wind, 225 PROBLEMS, 227 | | | 15. Surfaces of Discontinuity | 229 | | Discontinuities, 229 Fronts, 230 Fronts in a Geostrophic Wind Field, 232 Fronts as Zones of Transition, 233 The Tropopause, 234 PROBLEM, 236 | | | 16. | Circulation, Vorticity, and Divergence
Theorems | 238 | |-----|--|-----| | | The Circulation Theorem, 238 Physical Interpretation of the Circulation Theorem, 241 Selected Applications of the Circulation Theorem, 244 A Vorticity Theorem, 247 The Theory of Long Waves in the Westerlies, 253 | | | | 6. A Divergence Theorem, 256 PROBLEMS, 258 | | | 17. | The Fundamental Equations using Pressure as an Independent Coordinate | 259 | | | Substitution of Pressure for Height, 259 Horizontal Derivatives and Time Derivatives, 260 | | | | The Equations of Motion, 261 The Equation of Continuity, 261 The Vorticity and Divergence Equations, 262 Geostrophic and Thermal-Wind Approximations, 263 | | | 18. | Viscosity and Turbulence | 265 | | | The Fundamental Law of Viscosity, 265 The Equations of Motion Including Viscosity, 267 The Equations of Mean Motion in Turbulent Flow, 269 Modeling and Dynamic Similitude, 271 The Mixing-Length Theory, 274 Vertical Structure of the Wind in the Lowest Turbulent Layer, 276 Vertical Structure of the Wind above the Lowest Turbulent Layer, 279 | | | | 8. Diffusion of Other Properties, 283 PROBLEMS, 291 | | | 19. | Energy and Stability Relationships | 292 | | | The Energy Equation, 292 Internal and Potential Energies, 294 Frictional Dissipation of Kinetic Energy, 295 The Conversion of Potential and Internal Energies to Kinetic Energy, 297 | | | | PROBLEMS, 310 | | |-------|---|------------| | 20. N | Numerical Weather Prediction | 311 | | | Introduction, 311 The Reasons for Richardson's Failure, 314 The Basis of Modern Numerical Weather Pred. Numerical Solution of the Law of Conservation ticity, 317 Integration by the Method of Relaxation, 318 Establishment of the Future Boundary Values, Synopsis of the Procedure, 321 Conclusion, 322 PROBLEM, 324 | on of Vor- | | 21. T | The General Circulation | 325 | | | Scale of Atmospheric Motions, 325 Longitudinally Averaged Flow, 326 Longitudinally Varying Flow, 328 Constraints on Theories of the General Circulation Americal Circulation Model, 333 An Experimental Approach, 336 The Angular-Momentum Balance, 338 A Numerical Experiment, 345 | tion, 330 | | | Appendix I. Numerical Constants a
Conversions | nd 353 | | A | Appendix II. Derivation of Gauss's Divergence Theorem | 354 | | I | ndex | 357 | | L | ist of Symbols | End Papers | 5. The Mechanical Generation of Kinetic Energy, 302 6. Inertial Stability, 306