

INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE

DER TECHN. HOCHSCHULE

Introduction to Two. S. 20/ 548 THEORETICAL METEOROLOGY

SEYMOUR L. HESS

Florida State University

INSTITUT F. MET. U. KLIMAT. TECHN. HOCHSCHULE HANNOVER B 6

A Holt-Dryden Book

HENRY HOLT AND COMPANY, NEW YORK

CONSTABLE & CO LTD

10-12 ORANGE STREET, LONDON, W.C.2

CONTENTS

	PREFACE	Page vii
1.	Introduction	1
	1. The Physical Foundation, 1	
	2. The Goal, 5	
	3. Units and Dimensions, 5	
	4. The Earth, 7	
	5. The Atmosphere, 9	
	PROBLEMS, 10	
2.	The Equation of State	12
	1. The Variables of State, 12	
	2. Charles' Law, 13	
	3. Boyle's Law, 15	
	4. The Equation of State of an Ideal Gas, 15	
	5. Mixtures of Gases, 18	
	PROBLEMS, 19	
3.	The Principles of Thermodynamics	20
	1. Work, 20	
	2. Heat, 22	
	3. The Law of Conservation of Energy, 24	
	4. Internal Energy and Specific Heat Capacities of an Ideal	
	Gas, 27	
	5. Adiabatic Processes, 30	
	6. Entropy and the Second Law of Thermodynamics, 32	
	7. Summary of Thermodynamic Variables, 36	
	PROBLEMS, 37	
	iar	

4.	The Thermodynamics of Water Vapor and Moist Air	39
	 Isotherms on an a, e Diagram, 39 Thermal Properties of Water Substance, 41 The Equation of State of Moist Air, 43 Changes of Phase and Latent Heats, 44 The Clausius-Clapeyron Equation, 46 Adiabatic Processes of Saturated Air, 51 Moisture Variables, 58 PROBLEMS, 64 	
5.	Thermodynamic Diagrams	65
	 General Considerations, 65 The Emagram, 67 The Tephigram, 69 The Skew T-Log p Diagram, 70 The Stüve Diagram, 72 Choice of a Diagram, 74 PROBLEMS, 74 	
6.	Hydrostatic Equilibrium	75
	 The Hydrostatic Equation, 75 Height Computations for Upper-air Soundings, 77 The Hydrostatics of Special Atmospheres, 80 Altimetry, 86 Reduction of Pressure to Sea Level, 88 PROBLEMS, 90 	
7.	Hydrostatic Stability and Convection	92
	 General Considerations, 92 The Dry and Moist Adiabatic Lapse Rates, 92 The Parcel Method, 95 Changes of Stability During Displacement of Layers, 100 The Slice Method, 103 Entrainment into Cumulus Clouds, 106 The Bubble Theory, 110 PROBLEMS, 113 	

8.	The Fundamental Physics of Radiation	114
	 Nature of Radiation, 114 Atomic and Molecular Spectra, 115 Scattering, 119 Black-Body Radiation, 121 Radiative Transfer, 125 PROBLEMS, 127 	
9.	Solar and Terrestrial Radiation	128
	 The Nature of Solar Radiation, 128 Geographical and Seasonal Distribution of Solar Radiation, 131 Terrestrial Radiation, 134 PROBLEMS, 138 	
10	Applications to Radiation in the	
10.	Earth-Atmosphere System	139
	 The Basis of Elsasser's Method, 139 The Elsasser Diagram, 142 Radiative Heating and Cooling of Clouds, 147 Infrared Radiative Cooling of the Atmosphere, 148 Transformation of Maritime Polar Air into Continental Polar Air, 149 Radiative Equilibrium and the Stratosphere, 152 The Mean Annual Heat Balance, 155 PROBLEM, 160 	
11.	The Equations of Motion on a Rotating Earth	161
	 Inertial versus Noninertial Coordinate Systems, 161 The Dynamical Equations in a Rotating Coordinate System, 162 Gravitation versus Gravity, 166 The Pressure-Gradient Force, 169 Inertia Motion, 170 Individual versus Local and Convective Derivatives, 172 PROBLEMS, 174 	

12. Horizontal Motion under Balanced Ford	ces 175
 Equilibrium Motion, 175 Geostrophic Flow, 175 The Effect of Friction, 179 	
 Gradient Flow, 180 Comparison of Geostrophic and Gradient Wind Value Cyclostrophic Flow, 187 Representation of the Pressure Gradient on Other Horizontal Surfaces, 187 	
8. The Thermal Wind Equations, 189 PROBLEMS, 196	
13. Kinematics of Fluid Flow	198
 Kinematics versus Dynamics, 198 Resolution of a Linear Velocity Field, 198 Streamlines, Trajectories, and Streak Lines, 201 The Stream Function, 205 Circulation and its Relationship to Vorticity, 208 The Equation of Continuity, 212 The Complete Set of Equations Governing the sphere, 215 PROBLEMS, 217 	Atmo-
14. The Mechanism and Influence of Pressure Changes	219
 The Tendency Equation, 219 The Bjerknes-Holmboe Theory, 221 The Isallobaric Wind, 225 PROBLEMS, 227 	
15. Surfaces of Discontinuity	229
 Discontinuities, 229 Fronts, 230 Fronts in a Geostrophic Wind Field, 232 Fronts as Zones of Transition, 233 The Tropopause, 234 PROBLEM, 236 	

16.	Circulation, Vorticity, and Divergence Theorems	238
	 The Circulation Theorem, 238 Physical Interpretation of the Circulation Theorem, 241 Selected Applications of the Circulation Theorem, 244 A Vorticity Theorem, 247 The Theory of Long Waves in the Westerlies, 253 	
	6. A Divergence Theorem, 256 PROBLEMS, 258	
17.	The Fundamental Equations using Pressure as an Independent Coordinate	259
	 Substitution of Pressure for Height, 259 Horizontal Derivatives and Time Derivatives, 260 	
	 The Equations of Motion, 261 The Equation of Continuity, 261 The Vorticity and Divergence Equations, 262 Geostrophic and Thermal-Wind Approximations, 263 	
18.	Viscosity and Turbulence	265
	 The Fundamental Law of Viscosity, 265 The Equations of Motion Including Viscosity, 267 The Equations of Mean Motion in Turbulent Flow, 269 Modeling and Dynamic Similitude, 271 The Mixing-Length Theory, 274 Vertical Structure of the Wind in the Lowest Turbulent Layer, 276 Vertical Structure of the Wind above the Lowest Turbulent Layer, 279 	
	8. Diffusion of Other Properties, 283 PROBLEMS, 291	
19.	Energy and Stability Relationships	292
	 The Energy Equation, 292 Internal and Potential Energies, 294 Frictional Dissipation of Kinetic Energy, 295 The Conversion of Potential and Internal Energies to Kinetic Energy, 297 	

	PROBLEMS, 310	
20. N	Numerical Weather Prediction	311
	 Introduction, 311 The Reasons for Richardson's Failure, 314 The Basis of Modern Numerical Weather Pred. Numerical Solution of the Law of Conservation ticity, 317 Integration by the Method of Relaxation, 318 Establishment of the Future Boundary Values, Synopsis of the Procedure, 321 Conclusion, 322 PROBLEM, 324 	on of Vor-
21. T	The General Circulation	325
	 Scale of Atmospheric Motions, 325 Longitudinally Averaged Flow, 326 Longitudinally Varying Flow, 328 Constraints on Theories of the General Circulation Americal Circulation Model, 333 An Experimental Approach, 336 The Angular-Momentum Balance, 338 A Numerical Experiment, 345 	tion, 330
	Appendix I. Numerical Constants a Conversions	nd 353
A	Appendix II. Derivation of Gauss's Divergence Theorem	354
I	ndex	357
L	ist of Symbols	End Papers

5. The Mechanical Generation of Kinetic Energy, 302

6. Inertial Stability, 306